Introducción:
A lo largo de la historia de la industria de los ordenadores, la tendencia mayormente adoptada para conseguir un aumento de prestaciones, ha sido el incremento de la complejidad de las instrucciones. Es lo que se ha denominado "computación con conjuntos de instrucciones complejas" o CISC (Complex Instruction Set Computing).
Sin embargo, la tendencia actual, se esfuerza en conseguir procesadores con conjuntos de instrucciones de complejidad reducida o RISC (Reduced Instruction Set Computing). La idea es que un conjunto de instrucciones poco complejas son simples, y por tanto de más rápida ejecución, lo que permite crear un código más "aerodinámico".
Tanto la tecnología CISC como la RISC son acreditadas a IBM, aunque sus antecesores bien pueden ser John vonNeumman (inventor del primer programa de ordenador almacenado, y que promovía la velocidad inherente a conjuntos de instrucciones reducidas), Maurice Wilkes (padre de la microprogramación y de muchos conceptos de los diseños RISC), y Seymour Cray (primeros supercomputadores, empleando principios RISC).
En 1975, IBM inició el desarrollo de un controlador para un sistema de conmutación telefónica, que aunque fue abandonado, sirvió como punto de partida para el desarrollo de una CPU con tecnología ECL, corazón del sistema 801, precursor del IBM PC RT.
Los inicios de la tecnología RISC también surgen en el ambiente académico, ya que en 1980, la Universidad de Berkeley (California), el Dr. David A. Patterson inició un proyecto denominado RISC I, que obtuvo resultados en tan solo 19 meses, seguido por RISC II, SOAR (Smalltalk on a RISC) y SPUR (Symbolic Processing on a RISC). El resultado directo, además de la educación en la ingeniería y los fundamentos del diseño de microprocesadores, fue la creación de una máquina que fuese capaz de mayores velocidades de ejecución a menores velocidades de reloj y que requiriese menores esfuerzos de diseño.
Casi simultáneamente, en la Universidad de Stanford, el Dr. John Hennesy inició también un proyecto de implementación RISC, denominado MIPS, seguido por el sistema MIPS-XMP, enfocados hacia el proceso simbólico, demostrando las capacidades de velocidad de la arquitectura RISC.
Ambos profesores se vieron envueltos rápidamente, en proyectos de productos comerciales, y en concreto, Hennesy fue uno de los fundadores de MIPS Computer Systems, mientras Patterson actuaba de asesor durante el desarrollo del primer SPARC.
Por otro lado, durante las pasadas décadas, el multiproceso, como medida de incrementar drásticamente las prestaciones de los sistemas a un coste razonable, se ha visto reducido al ámbito de los computadores de "alto nivel", en parte debido a los bajos niveles de integración del silicio, y a la falta de software que facilitase la ejecución paralela de las aplicaciones.
Las ventajas de los procesadores RISC, especialmente las ligadas a los sistemas abiertos (léase UNIX), los hacen plataformas ideales para explorar los puntos fuertes de los sistemas multiprocesadores.
Tecnología RISC:
La comparación que antes hemos realizado entre CISC y RISC es algo simple, ya que no es sólo una cuestión de diferencias en el conjunto de instrucciones, puesto que es fundamental resaltar el mejor uso y aprovechamiento de los recursos del silicio, es decir, menor tiempo de diseño y empleo de menor número de transistores, lo que redunda en menor número de errores de diseño y menor tiempo de ejecución para instrucciones individuales.
Las características comunes a todos los procesadores RISC, fuente de sus capacidades de altas prestaciones, son:
Conceptos de multiproceso:
La industria informática, ha tenido siempre un objetivo primordial, repetido a lo largo de toda su cadena (fabricantes de semiconductores, fabricantes de sistemas y usuarios): la búsqueda de la velocidad. Para alcanzar este objetivo se han invertido ingentes cantidades de recursos, hasta alcanzar los límites físicos del silicio.
Obviamente, la velocidad va ligada a las prestaciones, y por lo general, la primera ha sido la principal medida para decidirse por un sistema u otro. Sin embargo, por muy evidente que parezca, y dados los límites físicos de los semiconductores, las prestaciones pueden no estar forzosamente ligadas a la velocidad. Hoy es posible construir sistemas, que aún teniendo procesadores más "lentos" que otros, ofrezcan unas prestaciones significativamente superiores. Son los sistemas multiprocesador, que como su denominación indica, incorporan varios procesadores para llevar a cabo las mismas funciones.
No es un concepto nuevo, ya que los "minicomputadores" construidos por compañías como NCR, Sequent y Stratus, ya empleaban varios nodos de proceso como alternativas económicas a otros productos de otras compañías. Sin embargo, aquellos sistemas aún duplicaban recursos caros del sistema, como memoria y dispositivos de entrada/salida, y por tanto, confinaban a los sistemas multiprocesador al mundo de los sistemas de alto nivel.
Ahora, y en gran medida gracias a los procesadores de arquitectura RISC, el soporte multiprocesador es una solución integrada y fácilmente disponible en estaciones de trabajo de sobremesa, que resuelve, a través de hardware VLSI, los complejos problemas de compartición de recursos (memoria compartida) de aquellas primeras máquinas.
Evidentemente, estas mejoras en el hardware, para ser funcionales, requieren importantes desarrollos en el software, y de hecho, muchos sistemas operativos admiten extensiones multiproceso (Match, SCO, Solaris, System V, etc.), que proporcionan paralelismo "en bruto" (asignando múltiples tareas a múltiples procesadores) a nivel del sistema operativo.
Las aplicaciones escritas para facilitar el paralelismo en su ejecución, incrementan significativamente las prestaciones globales del sistema; esto es lo que se denomina multi-enhebrado (multithreading), que implica dividir una sola aplicación entre varios procesadores. Sin embargo, los desarrolladores de software y programadores de aplicaciones sólo han comenzado a explorar las vastas posibilidades de incremento de prestaciones que ofrecen los sistemas con capacidades reales de proceso en paralelo.
El multiproceso no es algo difícil de entender: más procesadores significa mas potencia computacional. Un conjunto de tareas puede ser completado más rápidamente si hay varias unidades de proceso ejecutándolas en paralelo. Esa es la teoría, pero otra historia es la práctica, como hacer funcionar el multiproceso, lo que requiere unos profundos conocimientos tanto del hardware como del software. Es necesario conocer ampliamente como están interconectados dichos procesadores, y la forma en que el código que se ejecuta en los mismos ha sido escrito para escribir aplicaciones y software que aproveche al máximo sus prestaciones.
Para lograrlo, es necesario modificar varias facetas del sistema operativo, la organización del código de las propias aplicaciones, así como los lenguajes de programación.
Es difícil dar una definición exacta de un sistema multiprocesador, aunque podemos establecer una clasificación de los sistemas de procesadores en:
SISD o secuencia única de instrucciones y datos (Single Instruction, Single Data): una sola secuencia de instrucciones opera sobre una sola secuencia de datos (caso típico de los ordenadores personales). | |
SIMD o secuencia única de instrucciones y múltiple de datos (Single Instruction, Multiple Data): una sola secuencia de instrucciones opera, simultáneamente, sobre múltiples secuencias de datos (array processors). | |
MISD o múltiples secuencias de instrucciones y única de datos (Multiple Instruction, Single Data): múltiples secuencias de instrucciones operan, simultáneamente, sobre una sola secuencia de datos (sin implementaciones útiles actualmente). | |
MIMD o múltiples secuencias de instrucciones y datos (Multiple Instruction, Multiple Data): múltiples secuencias de instrucciones operan, simultáneamente, sobre múltiples secuencias de datos. |
Los sistemas multiprocesadores pueden ser clasificados con mayor propiedad como sistemas MIMD. Ello implica que son máquinas con múltiples y autónomos nodos de proceso, cada uno de los cuales opera sobre su propio conjunto de datos. Todos los nodos son idénticos en funciones, por lo que cada uno puede operar en cualquier tarea o porción de la misma.
El sistema en que la memoria está conectada a los nodos de proceso establece el primer nivel de distinción entre diferentes sistemas multiprocesador:
Es evidente, que los sistemas actuales tienden al uso de arquitecturas de memoria compartida, fundamentalmente por razones de costes, a pesar del problema de la contienda por el bus. Los tres fuentes fundamentalmente responsables de dicha disputa son la memoria (cada CPU debe usar el bus para acceder a la memoria principal), la comunicación (el bus es usado por los "bus masters" para la comunicación y coordinación), y la latencia de la memoria (el subsistema de memoria mantiene al bus durante las transferencias de datos, y en función de la velocidad a la que la memoria puede responder a las peticiones, puede llegar a ser un factor muy significativo).
Los sistemas de memoria caché y el multiproceso:
Los sistemas de memoria multinivel (caché) son un esfuerzo para evitar el número de peticiones realizadas por cada CPU al bus. Los caches son pequeñas y rápidas (y por tanto caras) memorias, que hacen de tampón (buffer) entre la CPU y la memoria externa, para mantener los datos y/o instrucciones. Se basan en el principio de la "localidad", lo que significa que, dada la fundamental naturaleza secuencial de los programas, los siguientes datos o instrucciones requeridas, estarán localizadas inmediatamente a continuación de las actuales.
Los datos contenidos en la memoria caché se organizan en bloques denominados líneas. Las líneas son cargadas en el caché como copias exactas de los datos situados en la memoria externa. Para referenciar a los datos de la memoria caché, se emplean marcas (tags) que identifican a cada línea. Las marcas o tags emplean una porción de la dirección física de los datos, para compararla con la dirección física solicitada por la CPU. Cuando existe una coincidencia exacta de la dirección y de otros cualificadores (estado, privilegio, contexto, etc.), se dice que ha tenido lugar un acierto (hit) de caché; en caso contrario, tiene lugar un fallo (miss) del caché, y en ese caso, los datos han de ser recuperados desde la memoria.
El empleo de memoria caché se ha popularizado, como medida para acelerar el tiempo de acceso a la memoria principal, incluso en los sistemas monoprocesador, evitando así, según se incrementa la velocidad de los propios procesadores, aumentar la velocidad de dicha memoria, y por tanto encarecer el sistema.
La forma en que la memoria es actualizada por los caches locales puede tener un gran impacto en las prestaciones de un sistema multiprocesador. Básicamente hay dos métodos:
Ambos sistemas requieren que los caches sean capaces de identificar peticiones en el bus que afecten a sus datos, lo que se realiza con una técnica conocida como "sondeo del bus" (bus snooping). Cada caché compara las direcciones de las peticiones en el bus compartido con los datos en su propio cache, usando las marcas (tags).
Este sistema requiere un acceso concurrente a las marcas (tags) del caché por parte del bus del sistema y del bus del procesador. Sin dicho acceso concurrente, el procesador no podría acceder al caché durante las operaciones de sondeo del bus (que tienen que tener prioridad de acceso a las marcas, para poder mantener la coherencia del caché). El resultado son frecuentes atascos del procesador y consecuentemente, bajo rendimiento.
A su vez, hay varios protocolos asociados con el sondeo del bus para el movimiento de los datos y los mensajes entre los caches:
RISC frente a CISC:
Existen varios mitos que contraponen las ventajas de la tecnología RISC frente a la CISC, que es importante descalificar:
Resumiendo:
No es un hecho meramente académico, sino puramente comercial y económico. La "era RISC" ha alcanzado a todos los fabricantes de semiconductores: AMD, Intel, MIPS, Motorola, ROSS, ...; y todos ellos son productos usados por fabricantes de ordenadores y estaciones de trabajo: Apple, DEC, HP, IBM, SUN, etc. y sus correspondientes clónicos.
El tiempo de diseño de estos productos se reduce sensiblemente, lo que disminuye su coste final, y por tanto, se incrementan sus expectativas, al poder llegar al mercado en un tiempo más adecuado, y con menos posibilidades de errores.
Además, son globalmente más eficaces, de menores dimensiones y más bajo consumo, ofreciendo siempre claras ventajas técnicas frente a los más avanzados CISC.
Actualmente, las estaciones de trabajo RISC multiprocesadoras de mayor éxito, se basan en diferentes versiones de la tecnología SPARC: superSPARC e HyperSPARC.
Esta claro que el futuro pertenece a los RISC y a los sistemas multiprocesador, a no ser que la física y la electrónica logren superar las barreras tecnológicas para incrementar muy por encima de las cotas actuales, las velocidades y prestaciones de una única CPU.
También cabe esperar, y por que no, la pronta aparición de otras tecnologías que compitan con CISC y RISC.
Autor: Jordi Palet Publicado por: Unix Systems (Abril 1995) |